Fe-Si-U (Iron-Silicon-Uranium)

V. Raghavan

The previous review of this system by [1992Rag] presented an isothermal section at \sim 795 °C near the U-corner. The update by [2003Rag] summarized the results of [1994Gon] on the ternary solid solutions that lie on the line of constant U content of 7.7 at.%. Recently, [2008Ber] determined an isothermal section at 900 °C for the entire composition range, which depicts eleven ternary phases.

Binary Systems

The Fe-Si phase diagram [Massalski2] shows that the fcc solid solution based on Fe is restricted by a γ loop. The intermediate phases are: α_2 (*B*2, CsCl-type cubic), α_1 (*D*0₃, BiF₃-type cubic), Fe₂Si (stable between 1212 and 1040 °C; hexagonal), Fe₅Si₃ (*D*8₈, Mn₅Si₃-type hexagonal), FeSi

Table 1	Fe-Si-U	crystal	structure	and	lattice	parameter	data	[2008Ber]	
---------	---------	---------	-----------	-----	---------	-----------	------	-----------	--

Phase	Composition, at.%	Pearson symbol	Space group	Prototype	Lattice parameter, nm
U_2 FeSi ₃ (τ_1 or A)	16.7 Fe	hP3	P6/mmm	AlB ₂	a = 0.4011
	50.0 Si				c = 0.3864
	33.3 U				
UFe ₂ Si ₂ (τ_2 or B)	40 Fe	tI10	I4/mmm	ThCr ₂ Si ₂	a = 0.3946
	40 Si				c = 0.9540
	20 U				
$U_3Fe_2Si_7 (\tau_3 \text{ or } C)$	16.7 Fe	oC24	Cmmm	La ₃ Co ₂ Sn ₇	a = 0.4013
	58.3 Si				b = 2.4324
	25 U				c = 0.4023
$U_2Fe_3Si(\tau_4 \text{ or } D)$	50 Fe	hP12	$P6_3/mmc$	MgZn ₂	a = 0.5154
	16.7 Si				c = 0.7686
	33.3 U				
UFe _{12-x} Si _x ($x = 1-3$) (τ_5 or E)	84.6-69.2 Fe	<i>tI</i> 26	I4/mmm	ThMn ₁₂	a = 0.8350 (a)
	7.7-23.1 Si				c = 0.4705
	7.7 U				
$U_2 Fe_{17-x} Si_x (x = 3.2-4) (\tau_6 \text{ or } F)$	72.6-68.4 Fe	hP38	$P6_3/mmc$	Th ₂ Ni ₁₇	a = 0.8330 (b)
	16.8-21.1 Si				c = 0.8201
	10.5 U				
UFeSi (τ_7 or G)	33.3 Fe	oP12	Pnma	TiNiSi	a = 0.7001
	33.3 Si				b = 0.4065
	33.3 U				c = 0.6857
$U_{1,2}Fe_4Si_{9,7}$ (τ_8 or H)	26.8 Fe	hP16	$P6_3/mmc$	Er _{1.2} Fe ₄ Si _{9.7}	a = 0.3960
	65.1 Si				c = 1.5075
	8.1 U				
$U_2Fe_3Si_5 (\tau_9 \text{ or } I)$	30 Fe		C2/c	Lu2Co3Si5	a = 1.0843
	50 Si				b = 1.1482
	20 U				c = 0.5163
					$\beta = 119.38^{\circ}$
UFe ₅ Si ₃ (τ_{10} or J)	55.5 Fe		P4/mmm	UFe ₅ Si ₃	a = 0.39296
	33.3 Si				c = 0.77235
	11.1 U				
$U_6Fe_{16}Si_7 (\tau_{11} \text{ or } K)$	55.2 Fe	<i>cF</i> 116	$Fm\overline{3}m$	Mg6Cu16Si7	a = 1.17817
	24.1 Si				
	20.7 U				
(a) at $x = 2$; (b) at $x = 3.2$					

Fig. 1 Fe-Si-U isothermal section at 900 °C [2008Ber]. Narrow two-phase regions are omitted

(*B*20-type cubic), β FeSi₂ (tetragonal), and α FeSi₂ (orthorhombic). The Fe-U phase diagram [Massalski2] depicts two intermediate phases: Fe₂U (*C*15, MgCu₂-type cubic) and FeU₆ (MnU₆-type tetragonal). The Si-U phase diagram [Massalski2, 2008Ber] has a number of compounds: Si₃U (*L*1₂, AuCu₃-type cubic), Si₂U (ThSi₂-type tetragonal), Si_{2-x}U (GdSi₂-type orthorhombic at the Si-poor boundary and ThSi₂-type tetragonal at the Si-rich boundary), Si₅U₃ (AlB₂-type hexagonal and two orthorhombic distortions of AlB₂-type), SiU (SiU-type tetragonal), Si₄U₅ (hexagonal), Si₂U₃ (*D*5_a-type tetragonal), and SiU₃ (AuCu₃-type cubic at 900 °C and other forms at lower temperatures).

Ternary Phase Equilibria

At 900 °C, [2008Ber] confirmed the existence of 11 previously-reported ternary compounds: U_2FeSi_3 (τ_1 or A), UFe_2Si_2 (τ_2 or B), $U_3Fe_2Si_7$ (τ_3 or C), U_2Fe_3Si (τ_4 or D), $UFe_{12-x}Si_x$ (x = 1-3; τ_5 or E), $U_2Fe_{17-x}Si_x$ (x = 3.2-4; τ_6 or F), UFeSi (τ_7 or G), $U_{1.2}Fe_4Si_{9.7}$ (τ_8 or H), $U_2Fe_3Si_5$ (τ_9 or I), UFe_5Si_3 (τ_{10} or J), and $U_6Fe_{16}Si_7$ (τ_{11} or K). The notation τ_1 , τ_2 , τ_3 , etc. are adopted here and correspond to A, B, C, etc. used by [2008Ber]. The structural details of these compounds determined by [2008Ber] are listed in Table 1.

Starting with high purity metals, [2008Ber] arc-melted alloys under Ar atm and annealed them at 900 °C for 15 days. The phase equilibria were studied with a scanning electron microscope equipped with an energy dispersive x-ray analyzer and with x-ray powder diffraction. The isothermal section constructed by [2008Ber] at 900 °C is shown in Fig. 1. All the 11 ternary compounds listed in Table 1 are present. The phase τ_5 (E) has a homogeneity range 7.7-23.1 at.% Si at constant U content of 7.7 at.%. The phase τ_6 (F) has a homogeneity range of 16.8-21.1 at.% Si at a constant U content of 10.5 at.%. The U-Si binary phases USi and USi₂ dissolve 2.5 and 6.7 at.% Fe respectively. The liquid phase present along the Fe-U side dissolves a few percent of Si.

References

- **1992Rag:** V. Raghavan, The Fe-Si-U (Iron-Silicon-Uranium) System, *Phase Diagrams of Ternary Iron Alloys. Part 6B*, Indian Institute of Metals, Calcutta, 1992, p 1173-1177
- 1994Gon: A.P. Goncalves, M. Almeida, C.T. Walker, J. Ray, and J.P. Spirlet, Phase Relations and Single Crystal Growth of U-Fe-M (M = Al, Si) Compounds with ThMn₁₂-Type Structure, *Mater. Lett.*, 1994, 19(1-2), p 13-16
- 2003Rag: V. Raghavan, Fe-Si-U (Iron-Silicon-Uranium), *J. Phase Equilb.*, 2003, 24(4), p 361
- 2008Ber: D. Berthebaud, O. Tougait, A.P. Goncalves, and H. Noel, Phase Relations and Stabilities at 900 °C in the U-Fe-Si Ternary System, *Intermetallics*, 2008, 16, p 373-377